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A two-dimensional horizontal flow is discussed, which is induced by other, 
buoyancy-driven flows elsewhere. It is an adaptation of the incompressible wall 
jet, which is driven by conditions a t  the leading edge and has no streamwise 
pressure gradient. The relation of this flow to the classical buoyancy-driven 
boundary layers on inclined and horizontal surfaces is investigated, as well 
as its possible connexion with a two-dimensional buoyant plume driven by a 
line source of heat. Composite flows are constructed by patching various such 
solutions together. The composite flows exhibit Gr) scaling (Gr being the Grashof 
number). 

1. Introduction 
Flows driven by buoyancy are not necessarily directed predominately upwards, 

even when they are unconfined in the vertical direction by a restraining boundary. 
Devotees of idly staring at  log fires are familiar with the curling of a flame 
around a log, often into a nearly horizontal direction. 

Stewartson (1958) gave a theoretical description of a flow field induced by 
buoyancy on a heated horizontal semi-infinite flat plate. The flow is self-similar, 
and corresponds to horizontal, accelerating boundary-layer flow below the plate, 
directed away from the leading edge. Since the buoyant driving force has in this case 
no component along the surface, the accelerating flow must be driven indirectly by 
a buoyancy-induced pressure gradient. Stewartson’s analysis contains a sign 
error in the pressure-gradient term of the horizontal momentum equation. When 
this is corrected, one finds a horizontal boundary layer above the heated surface, 
driven by an induced pressure, which falls in the direction of flow. The correct 
analysis was given by Gill, Zeh & del-Casal (1965). The same boundary-layer 
flow cannot exist below the heated plate, for it is associated with rising pressure 
in the flow direction. Extensive numerical integrations of the governing equations 
for the allowed flow were carried out by Rotem & Claassen (1969), who gave 
detailed velocity and temperature profiles as a function of Prandtl number. 
Their study also included results of a flow-visualization experiment. This shows 
that, although a horizontal boundary layer clearly can exist above a horizontal 
surface, its horizontal extent is limited. 

The flow just described differs in several ways from that driven by buoyancy 
on a semi-infinite flat plate inclined to the horizontal. Here the buoyancy force 
has a component along the surface, which directly drives the flow. It can be shown 
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that, except in the neighbourhood of the leading edge, this direct drive dominates 
induced pressure effects, which can therefore be neglected (Jones 1973). The 
resulting flow essentially reduces to the classical case of free convection on a 
vertical surface, which was discussed in detail by Ostrach (1964). Again a 
similarity solution exists, though with different form of the similarity variables 
from the horizontal case. In  particular, for the horizontal boundary layer, the 
velocity along the surface varies as gb*,  where g is the acceleration of gravity 
and v is kinematic viscosity. For the inclined case, the streamwise velocity varies 
as g4 and is independent of viscosity. This is because the boundary-layer variables 
are stretched with G d  for the horizontal case, and with Gra for the inclined case 
(Cr = Grashof number). For convenience, this horizontal flow will be called an 
SRC layer and the inclined flow an 0 layer. The 0-layer streamwise velocity 
increases more rapidly along the surface than that of the SRC layer. 

A combination of these is discussed in Jones (1973). In  considering a very 
slightly inclined semi-infinite surface, it  was noticed that the region near the 
leading edge resembles an SRC layer, while far downstream the flow asymptotic- 
ally corresponds to the 0 layer. This results from the fact that omission of the 
direct driving term is disallowed only far downstream when an SRC-layer scaling 
is used. Likewise, the neglect of induced pressure only becomes invalid far 
upstream with an 0-layer scaling. Jones (1973) gives non-similar corrections 
which bridge the gap between the two different similarity solutions to produce a 
smooth transition between them. Pera & Gebhart ( 1 9 7 3 ~ )  use the same technique 
to correct the upstream solution; and their study contains a comparison of their 
calculations with experimental velocity and temperature profiles. 

The purpose of this paper is to point out the possibility of another horizontal 
flow on a, heated horizontal surface, one in which the velocity is uninfluenced by 
any pressure gradient. In  this case there is neither a direct nor indirect drive from 
buoyancy; and this raises a very basic question about the existence of any flow 
a t  all. This question is easily answered: it was shown by Glauert (1956, 1958), for 
an isothermal flow, that there is indeed a non-vanishing solution of the boundary- 
layer equations, with uniform pressure and vanishing streamwise velocity both 
at the surface and far from it. This kind of flow is known as a wall j e t ;  and it gets 
its drive from conditions imposed at  the leading edge. Its streamwise velocity 
decreases with increasing downstream distance. Qualitatively, the wall-jet 
velocity profile in the transverse direction resembles those of the buoyancy- 
driven flows just described. A deeper correspondence with buoyancy-driven flow 
in fact exists. In  0 2 it is shown that, if the 0-layer scaling is retained for the heated 
nearly horizontal surface, then the streamwise momentum equation can be 
transformed into Glauert’s equation for the incompressible wall jet. The ap- 
propriate similarity form also allows a consistent balancing in the transverse 
direction of pressure gradient and buoyancy, and an energy balance, from 
which the momentum equation is decoupled. This flow will be called a G layer. 
Its properties are described in $3.  The velocity field is available analytically 
from the solution of Glauert (1956, 1958). The temperature field also can be 
inferred from solutions already obtained by Riley (1958) for the compressible 
wall jet. 
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The G layer is mathematically identical to Glauert’s wall jet, but it appears 
here in a different context, since it owes its existence indirectly to gravitational 
body forces. As a wall jet, it needs to be driven by conditions a t  the leading edge. 
One drive would be a buoyancy-induced flow on a heated inclined upstream 
portion of the surface, i.e. an upstream 0 layer. A calculation which patches an 
0 layer to a G layer is given in $ 4. A smooth matching with a non-similar tran- 
sition is beyond the scope of the paper; but it is interesting that, for both flows, 
the streamwise velocity is found to vary as g*, and to be independent of viscosity. 
Since both scale with Gr$, the composite flow contains contributions from each 
whose relative weight is independent of Gr and v. This is in contrast to Jones’ 
(1973) matching of an SRC layer to an 0 layer. 

Another interesting property of the G layer is found in connexion with two- 
dimensional vertical buoyant plumes. It is known experimentally that hori- 
zontal flow on a horizontal heated semi-infinite surface remains attached only 
over a limited length (Rotem & Claassen 1969; Pera & Gebhart 1973b). In most 
situations, in fact, vertical plumes are the most obvious element in buoyant 
convection above horizontal or nearly horizontal surfaces. Horizontal flow along 
the surface must play an essential role in feeding such plumes. A particularly 
clear illustration of thisis displayed in the flow-visualization experiments reported 
by Husar & Sparrow (1968). In $ 6  it is shown that a compatible scaling exists 
between the G layer and the similarity form of the classical two-dimensional 
vertical plume driven by a line source of heat (Brand & Lahey 1967; Gebhart, 
Pera & Schorr 1970; Fujii, Morioka & Uehara 1973), if one equates the heat 
transferred to the G layer over a given horizontal length to the strength of the 
heat source driving the plume. These flows can then also be patched together, 
to give a vertical plume velocity which varies as g4, and becomes independent of 
viscosity. Here, too, no real matching calculation is attempted; but it is again 
clear that, for any such composite flow, the relative contributions of G layer and 
plume would be independent of Gr. 

2. Governing equation and similarity 
In  the two-dimensional equations of motion, with the Boussinesq approxima- 

tion, which has become conventional for this problem (Stewartson 1958; Rotem 
& Claassen 1969), both the temperature gradient in the absence of motion and 
the adiabatic gradient are ignored: 

au aw -+- = 0, 
ax az 
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Here 9 is the gravitational acceleration, while v and K are the appropriate 
transport coefficients. Quantities u and w are the components of velocity in 
the directions x and z, along and normal to a semi-infinite flat plate, as measured 
from its origin. The plate is inclined to the horizontal at an angle a, and a surface 
reference temperature is Tl. Far from the plate, the temperature is To, and the 
density is po. The pressure and temperature fields induced by the motion are 

AT = T - TO, Ap = p -po +pog(x sin a + x cos a). 

The variables are now non-dimensionalized and stretched in the following way, 
using a characteristic length L along the surface and two dimensionless constants 
j? and E :  

A T = -  AT A @ = - - ,  ‘PL2 Gr“. 
TI - To’ P O V  

Equations (1)-( 4) become, in these variables, 

The quantity Gr is the Grashof number, which is supposed to be large, and Pr 
is the Prandtl number. Gr is given by 

It can be verified that the scaling used by Ostrach (1964) for the vertical plate 
corresponds to E = 1) ,8 = t .  The scaled pressure gradient across the boundary 
layer is then, from (7) ,  O(Gr-3). From this, one needs to argue physically that 
the longitudinal pressure gradient in (6), though in principle of order unity with 
this scaling, is in fact that of the outside flow, or nothing. The argument, but not 
the conclusion, is different for an inclined but not horizontal surface. One can now 
balance the transverse pressure gradient against the transverse component of 
the thermal driving term in (7), which gives E = 1 -p. Since p = still, based on 
the longitudinal thermal driving term in (6), E = 2.  Then, although the transverse 
gradient of pressure in (7) is not negligible, the horizontal one in (6) is, since this 
is O(Gr1-51) = O(Gr-4). In  either case, pressure effects in (6) are negligible. 
For any inclination except horizontal, or nearly so, (6) describes a balance 
between inertia, shear and direct thermal drive. 
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For a horizontally oriented surface, the scaling of Stewartson (1958) and 
Rotem & Claassen (1969) corresponds to p = 4 and E = 8 .  This again balances 
transverse thermal drive and transverse pressure gradient in (7), with E = 1 - 8. 
But now the pressure term in (6) is of order unity, and in fact is needed physically 
to drive the flow. The balance is between inertia, shear and pressure. 

We next introduce similarity variables, excluding from further consideration 
the vertical or nearly vertical surface. The then permitted balance in (7), between 
pressure and buoyancy terms, is made into a requirement for such a balance, and 
thus E = 1 -p. Further, in discussing the horizontal or nearly horizontal surface 
it has become conventional to introduce a modified Grashof number dr = Gr cos a. 
This is also done here. Equations (5)-(8) are then essentially unchanged except 
as follows: Gr is replaced by 6 r ,  cos a disappears from the second term on the right 
of (7), and sin a is replaced by tan 01 in the second term on the right of (6). The 
stream function $, temperature and pressure are taken to be of the form 

$ = OPF(r), A? = GPH(v), A@ = 21-P+n G(T/), 

where 7 = 92p-1. Equations (6)-(S), modified as described above, then become 

PI’’ +pFF“ - (2p - 1) F‘2 = Qyl-5823+n-5P [ (I  - P  + n) G -  (1 - P )  rG’1 

G‘ = H + O(Qr38--12-(3+n-3P) ), 

- @r14823+n-4p tan aH + O(dr-282-2p), (9) 

(10) 

Pr-lH”+pFH’- nHF‘ = O(6r-282-2p). (11) 

The occurrence of G and H in the first and second terms on the right of (9) 
identify these as the induced pressure and the direct thermal driving terms. 
Clearly, a similarity solution for the inclined surface requires ,8 = &, p = &(3 + n).  
This is the 0 layer. The induced pressure force in (9) then varies as dr-t 2--f(3+n), 
i.e. not only is it small for a large 6 r  but it decreases with increasing downstream 
distance. Equations (9)-(11) then transform into those given of Ostrach (1964). 
Similarly, for the nearly horizontal surface, if the induced pressure gradient is 
to drive the flow, one needs p = +, p = 3(3+n) .  Equations (9)-(11) are then 
those of Rotem & Claassen (1969), and the flow is an SRC layer. The direct 
driving term becomes proportional to dr*8%3+n)tana. This sets a limit on the 
allowable surface inclination for which direct thermal driving is unimportant, 
and for given a and dr the neglect of this term becomes invalid sufficiently far 
downstream. This is the behaviour exploited by Jones (1973) in his composite, 
non-similar solution for the slightly inclined surface. 

To motivate the next step physically, consider an example discussed again at 
the end of 8 5 .  On the upper side of a cooled inclined surface of finite length, colder 
heavy fluid will flow down the incline, accelerating towards the bottom. If the 
lower end of the incline terminates on a horizontal plane, the accelerated fluid 
must flow over this plane under the retarding force of friction but in absence of any 
further direct thermal drive. Indirectly induced drive by pressure may also 
exist; but this can be dominated by inertia effects if the magnitude of the velocity 
attained a t  the bottom of the incline is sufficiently large. Such a horizontal flow 
must therefore slow down. One therefore looks for the possibility of a balance 
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between inertia and friction on the horizontal surface, with a scaling compatable 
with that of the inclined flow, or j3 = a. With this j3 all the terms on the right of 
(9) can be made arbitrarily small for sufficiently small values of a and d d .  
The first-order terms on the left of (9) become identical to those that make up the 
equation solved by Glauert (1956) to obtain the wall jet if p = 4, f = 4F. This 
is the only non-trivial solution, assuming no reverse flow. Equations (9)-( 11) then 
become f” + ff” + 2f’2 = - $e2+n tan aH + O(dr-&z+n), 

Pr-lH” + fH’- 4nf’H = O(6kk2-8). 

(12) 

(14) 

= H + O(dr-t$-(z+n)), (13) 

The appropriate boundary conditions are 

f (O)  = f’(0) =~’(oo) = H(w) = G(co) = 0,  H(0) = f 1. 

The upper and lower signs occurring in the surface boundary condition on tem- 
perature correspond to flow above or below a heated surface, respectively, or 
below and above a cooled surface. In contrast to the case of pressure-driven flow, 
either sign is possible. 

3. Results based on wall-jet analogy 
Similarity solutions for (12)-( 14) exist in the limit d r  -+ 00, a -+ 0. Since the 

boundary conditions as well as the governing equation for f are identical to those 
of the wall jet, the flow field is given by Glauert (1956, (4.5)) 

In  the following, the positive sign is taken in the thermal surface boundary con- 
dition. Some solutions of (14) were given by Riley (1958). The ones appropriate 
to the present boundary conditions are 

n = 0 H = l-f*, Pr = 1; (16) 

n = -  t, H = (1 - f + ) p r .  (17) 

The heat transfer to the surface is proportional to H‘(0) 5F-8. Using the fact that 
f N + q 2  for small 7 one finds that for (16) H’(0) = - +. The temperature given by 
(17) corresponds to H’(0) = 0, and therefore an insulated surface with its tem- 
perature excess decreasing in the downstream direction as x - f .  

Equation (13) for the pressure is easily integrated for these cases when Pr = 1; 
as elaborated on below. One obtains 

1-f3 

43P  +f 4) ’ 
n = 0, G = -243tan-1 

n =  -1 *, G = -3(1-f*). ( 1 7 - 4  

These integrations are facilitated by a transformation to f 4  = y as a new in- 
dependent variable, following both Glauert and a lead provided by Riley (1958). 
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This permits a number of other solutions of the energy equation to be obtained 
easi1y.i These, while not directly relevant to the present considerations regarding 
buoyancy-driven flow, are also given below, since they may be of general interest 
for the compressible wall jet. Because 

f’ = 2YY‘ = Qy(1 -y3), 
one has 

Once H is known as a function of y, (18) can be integrated directly. The equation 
for H is, from (14), 

This can be transformed into a hypergeometric equation. For certain values 
of n, solutions exist that contain only a finite number of terms. For Pr = 1, some 
of these are as follows, in addition to (16) and (1  7): 

(22) 

n = - 3  , H = ( 1 - ~ ~ ) ( 1 - 1 1 ~ ~ + ~ ~ ~ ) .  (23) 

n = -1 4,  H = y(1 -y3) (1 -$y3), 

The function (20) was given by Riley (1958); the others are new. If (14) is inte- 
grated across the layer, from the surface to infinity, there results 

Pr-lH’(0) = -(4n+l)JoWHf’dy = -2(4n+l)/01Hydy. (24) 

Equation (24) relates the surface heat transfer to the integrated thermal energy 
content, convected downstream by the layer. Equations (20) and (22) give 
H ( 0 )  = 0, which implies that a wall jet hotter than ambient is passed over a 
surface maintained at ambient temperature. These flows heat the surface and 
H’(0) > 0. On the other hand, (21) and (23) satisfy H ( 0 )  = 1, but have no surface 
heat transfer; correspondingly the integral on the right of (24) vanishes. The 
physical interpretation of this is a cold jet blowing over a hot and insdated 
surface, with temperature excess and defect so arranged in the temperature 
profile that, when weighed with the local velocity, no net energy is transported 
downstream by convection. 

The case n = - 2  is of interest, because it provides the boundary between 
growth or decay in the downstream direction of the neglected direct driving 
term in (12). No simple closed-form solution was found for n = - 2, but it was 
possible to establish that, with H(0)  = 1, H’(0) = -2.08. Thus the wall heats 
thy flow. Equation (24) requires a negative energy integral; and it becomes less 
negative in the downstream direction. For constant heat flux along the surface, 

t I am indebted to S. H.Maslen for pointing this out, and for obtaining (21)-(23), 
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n = t. In  this case it was established that, with H ( 0 )  = 1, H'(0)  < 0. The integral 
in (24) is now positive. 

Clearly, there exist solutions of (13) and (14) for various n which satisfy the 
proper boundary conditions and are physically realistic. A full exploration of 
the possibilities is beyond the scope of this paper. Such solutions, together with 
the velocity field (15), are related to the original dimensional variables in (1)-(4) 
by 

The similarity variable 
Tl-To L2 t ( To v2x3) ' 

q = z  g-- 

One should note that the G layer contains n only through temperature and 
pressure. In  this flow, surface temperature variation does not affect the velocity 
field or the similarity variable, and therefore also not the boundary-layer thick- 
ness. This is in contrast to 0 or SRC layers. The maximum horizontal velocity 
occurs with f '  = 0.315, and is 

u,,,, = 1.26 ( g L o -  T,T Y))". (25) 

A boundary-layer thickness 6 is now defined on the basis that the velocity is 
1 % of the maximum velocity. This occurs almost precisely at  7 = 7, therefore 

Introduction of (26) into the above expression for pressure shows that 

Several points are worth noting. From (27), the pressure in the G layer is 
smaller, by a factor proportional to the boundary-layer thickness, than the 
dynamic pressure of the induced flow. It is the transverse pressure gradient that 
is of the order of the dynamic pressure. However, the pressure relative to the 
dynamic pressure varies in the downstream direction as xn+%. If n > -$, the 
pressure increases, on this relative basis; and far enough downstream its neglect 
is no longer justified. This is a manifestation of the restriction in (12), that 
i?r-)8%+n be not large. If one extravagantly takes as the greatest permissible 
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downstream distance for which the G layer remains valid that which makes this 
quantity unity, one has 

4. Considerations at the leading edge 
The longitudinal velocity becomes infinite a t  the leading edge as x-4. A 

physical interpretation is that the G layer has no thermal drive, direct or indirect, 
and therefore decelerates in the downstream direction. As a wall jet, it  must get 
its drive from an externally imposed forcing at the leading edge. 

Several kinds of drive come to mind. One, as in the original wall jet, involves 
impingement at the origin of a jet or sinking cold plume perpendicular to the 
surface. Also, an imposed horizontal jet can be visualized. Another drive could 
originate from an inclined portion of a heated surface located upstream, on 
which fluid directly driven by buoyancy (an 0 layer) proceeds towards the leading 
edge of the horizontal portion of the surface. This idea is explored below. The 
analysis shows how the length L, so far unspecified, can be related to physically 
meaningful parameters by a patching of G and 0 layers. This patching is per- 
formed simply by equating their maximum streamwise velocities and boundary- 
layer thicknesses. This procedure rests on the idea that the region of interaction 
between the layers is of the order of the boundary-layer thickness, and therefore 
short compared with the streamwise extent of the layers themselves. If this is so, 
then friction forces within it can be ignored, and the layers entering and leaving 
can be consideredlinviscid uniform streams, whose outer edge is a free streamline at  
constant velocity and pressure. The calculation is intended for a rough estimate 
of what one might anticipate from more rigorous matching calculations. An 
accuracy assessment is given in 9 7. 

Suppose that a t  the upstream leading edge a semi-infinite horizontal surface is 
joined to an inclined straight surface of length 1 and angle a. to the horizontal. 
For simplicity, assume that this surface is isothermal and a t  temperature TI. 
From the numerical results given by Ostrach (1964), one finds that the maximum 
longitudinal velocity and boundary-layer thickness (based on a value of 6.0 for 
the similarity variable used by Ostrach) of the 0 layer, in the present variables, 
are 

%laxo = 0.4 w,- TO)/TO <sin%J4 (29) 

Here 5 is the distance along this inclined surface from its leading edge. At the 
junction with the horizontal surface, the velocity and boundary-layer thickness 
are given by (29) and (30) with 5 = 1. 

For the G layer, as pointed out by Glauert (1956, 1958), an arbitrary constant 
C can be introduced into (25) and (26) to shift the origin of the co-ordinate system 
to x = - C .  Then in (25) and (26) one replaces x by x + C ,  and at  the location 
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x = 0 one finds 

8. C. Traugott 

Equating (31) with (29)) and (32) with (30)) results in two equations relating C 
and L to the given length 1. These are solved, to give 

C = 0.4691, L = 0.2181sin*ao. 

One should properly equate suitably defined displacement thicknesses; but this 
refinement, which allows for differences in velocity profiles, has only a small 
effect on the results, and seems unjustified. Note also that allowance of several 
boundary-layer thicknesses for the size of the interaction region would supply 
only small corrections to these inviscid relations. Re-introducing them into 
(25) and (26), with the shifted co-ordinate system, results in 

For large x these expressions are, except for the numerical factors, just (25) 
and (26) with L replaced by lsin*ao. As one might have expected, the charac- 
teristic length L, which appears in the solution of the G layer, can be identified 
with a characteristic length of the imposed flow a t  the leading edge, which in this 
example is 1. Although no complete matching between G and 0 layers has been 
attempted, the result is physically sufficiently plausible to give hope that the 
identification of L with 1 sin* a. will survive rigorous calculation, fully accounting 
for departures from similarity in the neighbourhood of x = 0. 

Unless n < -2, (33) and (34) will not be valid downstream of (28), which 
works out to be, for an isothermal surface, 

xmax/1 = 0.1 13 sin: aoGq - 0.469, 
where 

(35) 

This distance can be many multiples of 1 for sufficiently large Grl. 

5. Connexion with indirectly driven flow and discussion 
There have been many experiments reported in the literature on flow over 

a heated horizontal surface (as described in e.g. Pera & Gebhart 1 9 7 3 ~ ) )  and 
some of these have been interpreted in terms of the SRC layer. None of the experi- 
ments is completely free of leading-edge effects. The results of Q 4, for a G layer 
with upstream direct thermal driving, correspond to a horizontal flow over a 
heated surface which owes its existence entirely to leading-edge effects. It is 
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therefore of interest to make a comparison between (33) and (34) and correspond- 
ing predictions for the SRC layer. The appropriate scaling from $ 2  results in 

Rotem & Claassen (1969) give isothermal wall results for various Pr. For Pr = 1 
one gets, roughly, FkSx = 0-6 and 7 = 8 for the boundary-layer edge based on 
velocity. For the wall pressure, G(0)  = - 1-57. Then, with n = 0, one has 

Urnax,,, - - Oe6 [(g(Tl-To)/To)2~~]' = O e 2 l 2  [g(T1-To)/To ~SRCl', (37) 

APx~u,, = - 1'57Po [(!AT! - T0)/ToI2 vxI* = - 12*lPo&axsRo. (39) 
It is instructive to compare (37)-(39) with (25)-(27). The pressure in the SRC 

layer is proportional to the dynamic pressure, and this is obvious in view of the 
physical description of it given earlier. This is not because the pressure is larger 
in the SRC layer than in the G layer, but because the velocity is smaller (compare 
the second form on the right of (37) with (25)). The x dependence of velocity in 
either case is very different. Note also that L has disappeared from (37)-(39). 
This loss of a parameter has the consequence that it becomes impossible to patch 
directly velocity and boundary-layer thickness of an upstream 0 layer to the 
SRC layer a t  x = 0, by a method such as in $4. But this does become possible 
further downstream through an intervening G layer. 

Comparing (37) with (25) indicates that G- and SRC-layervelocities can beequal 
when SsRc = O(L2/x) .  This condition turns out to agree with (28). That indicates 
a possible downstream matching between these layers. A patch, in the previous 
sense, is easily carried out, which equates the velocities from (37) and (33), and 
the boundary-layer thicknesses from (38) and (34). Two constants are introduced: 
one is a co-ordinate shift for the SRC layer, the other the co-ordinate of the 
matching point. Some algebra gives the latter to be about twice that of (35), or 

There urn,,, = umaxBm = u* = 0-514v/Zsin+a0Ch.,P, 

x*/Z = 0.287 sin+ a, Gr,+ - 0.469. (40) 

6, = Ss,, = S* = 5*891sin4~~,Gri+. 

Up to x = x*, S is given by (34); beyond, it is 

v2(x + 0.4691 + 0.1751 sin; a, Grt)2 * 
SSRC = [ dT1- To)/To 1 .  

For x < x*, SG < SsR,. Boundary-layer analysis is valid only if S*/(x* + 2) is 
small; this quantity is given by 

(41) 
S* 20.5 -- 

x*+Z - sinScxoGrz~(l + 1.85sin+aoGr~+)' 
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1 

l c m  Air 

lOcm Air 

I m  Air 

l k m  Air 

Water 

Water 

Water 

Gr1 
4.4 x 103 
0.96 x lo6 
4-4 x 106 
0.9 x 109 

4.4 x 10s 
0.96 x 
4.4 x 10y 

x*/l 

0.28 
1.1 
1.5 
3.9 

4.9 
10.9 

103 

3.3 

10.4 

33 

1.26 2.7 
0.35 1.8 

0.24 4.3 
0-057 3.6 

0.038 10 
8.8 x 6.5 

1.1 x 10-4 72 1.04 x 103 

t Significant for gravitationally stable conditions only. 

TABLE 1 

These expressions summarize results from patching an 0 layer to a G layer to an 
SRC layer. The G layer disappears if x*/I from (40) vanishes, because then the 
0 layer patches directly to the SRC layer. For this condition, (41) gives 

S*/(x* + I )  = 5.06 sin a,. 

This is clearly not small; therefore such a boundary-layer matching is impossible. 
With Gr, sufficiently large, a G layer can occupy an intermediate region 

0 < x < x*. Table 1 gives some typical values of key quantities, assuming either 
air or water at Z O O C ,  (Tl- T,)/T, = 10-l, and a straight, 45" inclined surface 
ahead of the leading edge of the horizontal surface. 

The first entry in table 1 indicates that a typical laboratory experiment with a 
small, 1 cm characteristic thickness at the leading edge cannot be influenced by 
a G layer, since this is lost among general leading-edge effects. For this I ,  the 
layer in water is confined to x N I ,  with the basis of the prediction only marginally 
valid, while in air the boundary-layer approximation breaks down. With I = 1 m, 
a G layer should be easily observable. The kilometre entry is included as of 
possible geophysical interest (discussed below). 

Some remarks on stability, separation into vertical plumes, and turbulence 
are necessary, in view of some of the larger GrI given in table 1.  Experiments by 
Tritton (1963), on a heated inclined plate, indicate that for a 45' inclination, 
laminar spells alternate with periods of fluctuating flow up to approximately 
Gr = lo9 for gravitationally unstable flow above the surface, and Gr = 3 x 1O1O 
for gravitationally stable flow below it. Beyond that, Tritton claimed some kind 
of turbulence becomes fully established. For this reason, conditions are flagged 
in table 1 for which the significance of laminar calculations is very questionable. 
They are nevertheless displayed for the following reasons. 

Separation into vertical plumes cannot occur for flow above a cold surface. 
The present analysis is equally valid for horizontal flow driven by flow either 
up a hot incline or down a cold one. Consider then only the latter case for very 
large Gr,. A local Reynolds number can be defined for the G layer by u,,,, S,/v. 
This increases with x, and attains its largest value at  x*. There one finds 

Re: = u*&*/v = 3-03 sin+ a, Gr,:. 
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For Gr, = 1012, cto = an, this gives Re: = 7.1 x lo3. This is large, but not im- 
possibly large for an unstratified laminar flow without a pressure gradient. 
Stable stratification will further stabilize the flow. Thus, even a t  this large Gr,, 
the G layer above a cold surface could possibly stay laminar all the way up to x*. 
But clearly this cannot be the case with 1 = 1 km. This example is given for its 
possible relevance to glacier winds. Tritton (1963) speculated that, even here, 
the flow may be intermittent, with periods of laminar flow during which the 
entire profile is locally well represented by a laminar solution. If this is so, then 
perhaps further speculation may be permitted, that the nature of the flow 
field over horizontal ground a t  the foot of a sloping glacier field is a wall jet. 
This seems intuitively obvious as a description of the decay of such a wind; 
and indeed the last row in table 1 shows a wall-jet region in effect extending 
to infinity. The laminar results of $ 4  may here find a geophysical applica- 
tion, which a t  the least could be a basis of comparison with future turbulent 
calculations. 

6. Connexion with vertical buoyant plume 
Consider now a two-dimensional G layer above a heated horizontal surface, 

with its origin at x = -CH. Maximum velocity and boundary-layer thickness 
are then given by (25) and (26), with x replaced by z+CH. Suppose that the 
layer separates to form a vertically rising buoyant plume, and let the horizontal 
distance to the plume centre-line be d .  There is a known similarity solution for a 
two-dimensional buoyant plume driven by a line source of heat of strength Q 
(Brand & Lahey 1967; Gebhart et al. 1970; Fujii et al. 1973). A connexion be- 
tween these flows can be made on the same basis as before, i.e. they can be 
patched together. When this is done, the nature of the patch turns out to be in- 
dependent of Gr. Only the isothermal surface is considered. From the results of 
Fujii et al. (1973) and with a shift of the vertical co-ordinate z SO that the plume 
origin is at z = - CT,, one obtains for the maximum velocity at the centre of the 
plume and the full plume width 

8, = 14 (A)-’ [v3(z + cv)2]*. 
Po c, To 

(43) 

The quantity Q, which drives the plume, can be connected with the heat picked 
up by the G layer from the horizontal surface through 

This can be written as 
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The value of the integral is + for an isothermal surface (see 0 3); therefore the heat 
gained by the horizontal flow from its origin to the point of separation is 

If one now uses (44) in (42) and (43), and equates these with (25) and (26), there 
results 

d+CH = 1*89L, C, = 0.727L. 

These relations are independent of v. They state that a G layer with charac- 
teristic length L, after proceeding above a heated surface for a distance approxi- 
mately twice L, will have the same heat content, thickness, and characteristic 
velocity as a buoyant plume originating at  a distance, roughly L, below the sur- 
face. The characteristic temperature differences of the two flows also are found to 
be compatible. The implication is not intended that this in some way demon- 
strates that the flow must separate there. Nevertheless, if it does, then a charac- 
teristic velocity a t  this point is given, by either (31) or (42), as 

W* = 0.918 [g(Tl - To)/To L]*. 

Anywhere above this point the maximum velocity and half-width of the plume 
are 

w,,, = 0 ~ 9 1 8 [ g ( T , - T o ) / T o L ] ~ ( 1 ~ 3 7 8 ~ / ~ +  1)4, 

S = 6.24LGr-4 (1-3782/L + 1)z. 

These expressions combine the functional dependence on height of the classical 
plume solution with the dependence on gravity and viscosity of directly driven 
buoyant flow. 

They also contain the so far unspecified quantity L, which represents an arbi- 
trary constant with scales the strength of the G layer. There is an interesting 
case where this length can be related to the flow geometry. This is two-dimensional 
large Gr convection between infinite horizontal surfaces separated vertically by 
H .  There have been attempts to construct such flows from a proper combination 
of horizontal and vertical boundary-layer-like flows (Robinson 1967,1969, 1970; 
Wesseling 1969). Here the extent of the horizontal layer is also O ( H ) ;  and it may 
be that horizontal wall jets with L taken proportional to H ,  matched to ascending 
and descending plumes, play a role in determining the structure of this important 
example of buoyantly driven flow. 

Finally, it should be noted that one finds that an 0 layer, for which the para- 
meter L does not appear in either velocity or boundary-layer thickness, cannot 
because of this be patched to a plume by the present simple method. 

7. Concluding remarks 
The main point made in this paper is that the two-dimensional wall jet is 

relevant to two-dimensional natural convection flow over horizontal surfaces. 
Perhaps, in retrospect, this is obvious. The flow in its present context contains a 
scaling length L, which relates to conditions which drive the motion. This scaling 
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factor is related to that of Glauert's original wall-jet solution. There, the quantity 
F occurs, which is a measure of the flow of exterior momentum, and a constant 
reference velocity Ucc H v - ~ .  One finds the correspondence to be 

Thus, by proper identification of F and U ,  the velocity field of Glauert's wall 
jet directly transforms into that discussed here, and perhaps these relations 
could have been guessed or established by dimensional analysis. In  any case, the 
developments in $5 2 and 3 establish this correspondence, and, further, the com- 
plementary temperature and pressure fields. This analysis is exact in the usual 
sense of boundary-layer theory. 

On the other hand, the patching technique used in the remainder of the paper 
is not, and was not meant to be, rigorous. Although numbers are produced in 
these examples, they are to be interpreted only as approximate indications of 
what could be expected from refined matching calculations of the kind used by 
Jones (1973) in his matching of SRC and 0 layers on a slightly inclined surface. 
An accuracy estimate was obtained by carrying out the patching procedure for 
his problem and comparing this to his solution. This showed a wall shear 36 % 
too low at the location of the patch, where the maximum error occurs. 

Generalization to axisymmetric flow would seem to present no difficulty in the 
case of a G layer driven by an upstream 0 layer. The corresponding solution for 
a diverging wall jet has been given by Glauert (1956), and directly driven flow on 
the outside of a vertical cylinder is also known (see again Ostrach 1964). However, 
geometrical generalization of the plume discussion in 0 6 is another matter. The 
solution for an axisymmetric plume driven by a point source of heat is known. 
However, if this is fed by a horizontal inflow, it must be converging, and I know 
of no solution for a converging wall jet. Nor is it clear what could drive this. On 
the other hand, a descending cold plume could drive a divergent axisymmetric 
G layer. There is clearly room for further work. 

This research was partially sponsored by the U.S. Air Force Office of Scientific 
Research (AFSC) under contract F44620-71-C-0011. I am grateful to J. J. 
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